Exploring interface mechanisms in metal-ion batteries via advanced EQCM - Faculté des Sciences de Sorbonne Université Accéder directement au contenu
Thèse Année : 2020

Exploring interface mechanisms in metal-ion batteries via advanced EQCM

Exploration des mécanismes interfaciaux présents dans les batteries métal-ion par EQCM avancée

Pierre Lemaire

Résumé

Research and technological improvements in rechargeable Li-ion batteries were driven early by the emergence of portable electronic devices and more recently by ever-increasing electric vehicle and power grid markets. Yet, advances in terms of power rate, lifetime, autonomy, cost and sustainability are still feasible. Key to these improvements is the mastering of the electrode-electrolyte interfaces (EEI) in respect of charge transfer and transport that are linked to the motion of the solvated alkali metal ions. This work aims to provide more insight into the underlying science of the EEI by exploiting electrogravimetric-based techniques derived from electrochemical quartz crystal microbalance (EQCM). To begin with, we give a comprehensive description of the fundamentals of the electrogravimetric measurements together with the developed technical setups prior to unroll our experimental strategies to get into the private life of these interfaces. Then, this thesis enlists the study of Li-ion and K-ion chemistries in both aqueous and non-aqueous electrolytes. More specifically, we demonstrate the crucial role of the desolvation step on the electrode rate capability, that we rationalized in terms of number of solvent molecules pertaining to the solvation shell at the EEI in both electrolytes, hence defeating previous beliefs based on ionic conductivity differences or else. Lastly, for the sake of completeness, the role of the water molecules in the interfacial transfer process and their influence on the overall kinetics in a proton-based battery is explored.
La recherche ainsi que les progrès technologiques dans le domaine des batteries Li-ion ont été stimulés très tôt par l’émergence des appareils électroniques portatifs et, plus récemment, par la demande constamment croissante des marchés de la mobilité électrique et des réseaux électriques. Mais des améliorations en termes de puissance, durée de vie, autonomie, coût et durabilité sont encore réalisables. La clé de ces améliorations est la maîtrise des interfaces électrode-électrolyte (IEE) en matière de transfert de charge et de transport qui sont liés au mouvement des ions alcalins solvatés. Cette étude vise à mieux comprendre la science fondamentale de l’IEE par l’exploitation des techniques électrogravimétriques basées sur la microbalance à cristal de quartz avec couplage électrochimique (EQCM). Tout d’abord, nous donnons une description exhaustive des mesures électrogravimétriques ainsi que de l’instrumentation développée avant d’appliquer nos stratégies expérimentales pour entrer dans la vie privée de ces interfaces. Ensuite, l’étude des chimies Li-ion et K-ion est réalisée en électrolyte aqueux ainsi que non-aqueux. Plus particulièrement, nous démontrons le rôle crucial de l’étape de désolvatation sur les performances en puissance de l’électrode. Etape que nous avons rationalisé en nombre de molécules de solvant participant à la sphère de solvatation à l’IEE dans les deux électrolytes, défaisant ainsi les idées répandues basées sur les différences de conductivité ionique ou autre. Enfin, par souci d’exhaustivité, le rôle des molécules d’eau dans le processus de transfert interfacial et leur influence sur la cinétique globale dans une batterie à proton est exploré.
Fichier principal
Vignette du fichier
LEMAIRE_Pierre_these_2020.pdf (9.95 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-03347410 , version 1 (17-09-2021)

Identifiants

  • HAL Id : tel-03347410 , version 1

Citer

Pierre Lemaire. Exploring interface mechanisms in metal-ion batteries via advanced EQCM. Material chemistry. Sorbonne Université, 2020. English. ⟨NNT : 2020SORUS211⟩. ⟨tel-03347410⟩
309 Consultations
347 Téléchargements

Partager

Gmail Facebook X LinkedIn More