Tonelli Hamiltonians without conjugate points and $C^0$ integrability

Abstract : We prove that all the Tonelli Hamiltonians defined on the cotangent bundle $T^*\T^n$ of the $n$-dimensional torus that have no conjugate points are $C^0$ integrable, i.e. $T^*\T^n$ is $C^0$ foliated by a family $\Fc$ of invariant $C^0$ Lagrangian graphs. Assuming that the Hamiltonian is $C^\infty$, we prove that there exists a $G_\delta$ subset $\Gc$ of $\Fc$ such that the dynamics restricted to every element of $\Gc$ is strictly ergodic. Moreover, we prove that the Lyapunov exponents of every $C^0$ integrable Tonelli Hamiltonian are zero and deduce that the metric and topological entropies vanish.
Type de document :
Pré-publication, Document de travail
37 pages. 2013
Liste complète des métadonnées
Contributeur : Maxime Zavidovique <>
Soumis le : mercredi 25 septembre 2013 - 08:47:10
Dernière modification le : mercredi 21 mars 2018 - 18:56:45

Lien texte intégral


  • HAL Id : hal-00865723, version 1
  • ARXIV : 1309.6076



Marc Arcostanzo, Marie-Claude Arnaud, Philippe Bolle, Maxime Zavidovique. Tonelli Hamiltonians without conjugate points and $C^0$ integrability. 37 pages. 2013. 〈hal-00865723〉



Consultations de la notice