Skip to Main content Skip to Navigation
Preprints, Working Papers, ...

Sur l'inversion de l'opérateur de Ricci au voisinage d'une métrique Ricci parallèle

Abstract : Let $(M,g)$ be a compact riemannian manifold without boundary. Under some natural conditions on the curvature, the Lichnerowicz Laplacian $\Delta_L$ is non negative and its kernel is reduced to parallel tensors. We assume that the Ricci curvature is non degenerate and parallel, and that the first Betti number vanishes. We show that for all $R$ close enough to the Ricci tensor of $g$, there exist a metric close to $g$ with Ricci curvature is $R$, up to an additionnal small element in $\ker\Delta_L$. We then give some examples of products of Einstein manifolds that satisfies the hypothesis. We also study the Ricci contravariant operator together with some other curvature operators.
Document type :
Preprints, Working Papers, ...
Complete list of metadatas

https://hal-univ-avignon.archives-ouvertes.fr/hal-00974707
Contributor : Erwann Delay <>
Submitted on : Monday, April 7, 2014 - 1:07:03 PM
Last modification on : Tuesday, January 14, 2020 - 10:38:15 AM
Long-term archiving on: : Monday, July 7, 2014 - 11:16:30 AM

Files

RicciProduit.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00974707, version 1
  • ARXIV : 1404.1865

Citation

Erwann Delay. Sur l'inversion de l'opérateur de Ricci au voisinage d'une métrique Ricci parallèle. 2014. ⟨hal-00974707v1⟩

Share

Metrics

Record views

131

Files downloads

59