R. Bartnik and J. Isenberg, The constraint equations, The Einstein equations and the large scale behavior of gravitational fields, pp.1-38, 2004.

G. B. Cook, H. P. Pfeiffer, and S. A. Teukolsky, Comparing initial-data sets for binary black holes, Phys. Rev. D, issue.66, pp.1-17, 2002.

J. Isenberg, Constant mean curvature solutions of the Einstein constraint equations on closed manifolds, Classical and Quantum Gravity, vol.12, issue.9, pp.2249-2273, 1995.
DOI : 10.1088/0264-9381/12/9/013

A. Lichnerowicz and L. , intégration deséquationsdeséquations de la gravitation relativiste et le probì eme des n corps, Journal de Mathématiques Pures et Appliquées, vol.23, p.3763, 1944.

R. Gicquaud, M. Dahl, and E. Humbert, A limit equation associated to the solvability of the vacuum einstein constraint equations by using the conformal method, Duke Mathematical Journal, vol.161, issue.14, p.26692697, 2012.

D. Maxwell, A class of solutions of the vacuum Einstein constraint equations with freely specified mean curvature Initial data in general relativity described by expansion, conformal deformation and drift, arXiv:1407.1467 [gr-qc] (2014). [8] , The conformal method and the conformal thin-sandwich method are the same, Math. Res. Lett. Classical and Quantum Gravity, vol.16, issue.4 14, p.31, 2009.

J. W. York, Conformally invariant orthogonal decomposition of symmetric tensors on Riemannian manifolds and the initial???value problem of general relativity, Journal of Mathematical Physics, vol.14, issue.4, p.456464, 1973.
DOI : 10.1063/1.1666338