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Abstract. We propose further conformal parametrizations for
initial data in some modified Einstein gravity theories. Some of
them give rise to conformally covariant systems.
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1. Introduction

Motivated by the problem of dark matter, early-time inflation or
late-time acceleration of the universe, a multitude of modified gravity
theories are currently studied: f(R), Lovelock, Einstein-Gauss-Bonnet,
cubic, quadratic,...

As in general relativity, the space and time correlation in theses
theories implies that the initial data for the evolution problem cannot
be chosen freely.

In general, in vacuum for instance, the initial data for such modi-
fied Einstein gravity theories are given by a manifold M of dimension
n, equipped with a Riemannian metric ĝ (spatial geometry at a time

0) and a symmetric 2-tensor field K̂ (infinitesimal deformation of the
spatial geometry at time 0), satisfying some constraint equations of the
form (for details, see eg. [4], [1], [7], [8], and the appendix 5.2 )

{
ρ(ĝ, K̂) = 0 ,

J(ĝ, K̂) = 0 .
(C)

In this system, the first equation, the Hamiltonian constraint, is scalar
and the second one, the momentum constraint, is vectorial. Such a
system is known as the Cauchy problem for the related gravity theory.
This system is highly under-determined because it contains (n + 1)
equations for n(n + 1) unknowns. As a consequence, it is natural to
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look for (n + 1) unknowns, fixing the remaining ones.

The goal of this note is to point out some different possibilities to pa-
rametrize (and then different ways to construct) solutions of (C). Some
of them give rise to an interesting mathematical property, namely the
conformal covariance.

Acknowledgements: I am grateful to P.T. Chruściel and Ph. De-
lanoë for comments.

2. The usual conformal method

On a smooth manifoldM of dimension n, given a Riemannian metric
g, we denote by ∇ its Levi-Civita connection. If h is a symmetric
covariant 2-tensor field, we define its divergence as the 1-form given by

(divg h)i = −∇
khki.

The classical method (York’s method A) starts from a given metric
g together with a trace-free and divergence-free symmetric 2-tensor
field σ (a TT-tensor) and a real function1 τ . It consists in looking for
solutions of (C) of the form

ĝ = φN−2g , K̂ =
τ

n
ĝ + φ−2(σ + L̊gW ) (P)

where N = 2n
n−2

, and the unknowns are a function φ > 0 and a one
form W and where

(L̊gW )ij = ∇iWj +∇jWi −
2

n
∇
kWk gij.

We infer from (C) and (P) a coupled system of the form (see eg. [1], [8])

(S)

{
ρ(ĝ, K̂) =: Lg,τ,σ(φ,W ) =0

J(ĝ, K̂) =: Vg,τ,σ(φ,W ) =0

(L)

(V)

where the scalar equation (L) is a generalisation of the Lichnerowicz
one (see [6]) and the equation (V) is usually called the vector equation
(see [9]).

In order to produce further interesting parametrization we recall
some basic fact. Firstly, the operators divg and L̊g are conformally
covariant (see appendix 5.1 for a precise definition). Indeed, for any
positive function ψ, if g̃ = ψN−2g then

divg̃ h = ψ−N divg(ψ
2h) , L̊g̃W = ψN−2

L̊g(ψ
2−NW ). (C)

Secondly, we recall the York decomposition [9] valid for instance if

M is compact and g has no conformal Killing vector fields (i.e. ker L̊g

1playing morally the role of a mean curvature function
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is trivial): any covariant symmetric trace free 2-tensor field h splits in
a unique way as

h = σ + L̊gW, (Y)

where σ is a TT-tensor and W is a 1-form.

3. A conformally covariant parametrization

Getting back to (C), we use now the York decomposition relative to
ĝ, namely

K̂ −
τ

n
ĝ = σ̂ + L̊ĝŴ .

From (C), if we are looking for a solution of (C) in a conformal class
ĝ = φN−2g, it is natural to introduce σ̂ = φ−2σ, where σ is a TT-tensor.

Still using (C), and expressing L̊ĝŴ in terms of g = φ2−N ĝ, we are also

prompted to set Ŵ := φN−2W .
Sticking to the same fixed g, σ, τ , we can thus parametrize the solu-

tions of the constraint (C) by




ĝ = φN−2g ,

K̂ =
τ

n
ĝ + φ−2(σ + φN L̊gW ) .

With this parametrization in (C) we obtain a new system of the form
(see eg. [5])

(S ′

g,τ,σ)




ρ(ĝ, K̂) =: L′

g,τ,σ(φ,W ) = 0 ,

J(ĝ, K̂) =: V ′

g,τ,σ(φ,W ) = 0 .

If we follow the same method but, instead of g, starts from a conformal
metric g̃ = ψN−2g and from the related symmetric 2-tensor σ̃ = ψ−2σ
(which is divg̃ free by (C)), sticking to the same given real function τ ,

we see from (C) that the couple (φ̃ = ψ−1φ, W̃ = ψN−2W ) solves the
resulting system (S ′

g̃,τ,σ̃) iff (φ,W ) solves (S ′

g,τ,σ).
In other words,the system (S ′

g,τ,σ) is conformally covariant. This
simple observation shows that York’s method B (see [1, Section 4.1] or
the original paper [9, Page 461]), also called the physical TT method,
stays valid for every modified gravity theory, regardless of the explicit
form of the equations (C).

4. Further parametrizations

In this section, we propose more general but still natural parametriza-
tions. Let g̃ = ψN−2g be another conformal metric. The York decom-
position (Y) relative to g̃ of the tensor

φ2ψ−2(K̂ −
τ

n
ĝ),
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leads to the parametrization




ĝ = φN−2g ,

K̂ =
τ

n
ĝ + φ−2(σ + ψN L̊gW ).

Putting this parametrization in (C), we obtain a new interesting sys-
tem. Of course, we could let ψ depend on φ and possibly on some other
parameters in the system obtained. It can be seen (compare [1] for the
GR initial data) that the conformal method A consists in choosing
ψ = 1, the conformal method B arises when ψ = φ, and for ψ a fixed
positive function, we obtain the conformal thin sandwich method. But
many other choices can be made, and some of them also yield confor-
mally covariants systems (see [5]).

Remarks 4.1.
• It is probable that, depending on the gravity theory studied, an
adapted choice of ψ will be judicious.
• For an arbitrary function f , we could use in the same way the York

decomposition related to g̃ of the tensor f(K̂ − τ
n
ĝ). This will produce

a system where f and ψ can be choosen freely (possibly depending on
some other parameters and/or variables).
• In [8], a discussion is made about a choice of the different powers of the
conformal factor that can be used to define the conformal parametriza-

tion. With our parametrizations, only the Âij there is changed. But we
can see that in that case the natural choice to make, with the notations
of [8] is τ = 0, m = 2/(N − 2) and l = −2 there.

5. Appendix

5.1. Conformal covariance. Let us consider three products of tensor
bundles over M ,

E = E1 × ...×Ek, F = F1 × ...× Fl, G = G1 × ...×Gm,

and a differential operator acting on the sections :

Pg : Γ(E) −→ Γ(F ),

with coefficients determined by g = (g1, ..., gm) ∈ G. We will say
that Pg is conformally covariant if there exist a = (a1, .., ak) ∈ R

k,
b = (b1, .., bl) ∈ R

l and c = (c1, .., cm) ∈ R
m such that for each smooth

section e of E, and every smooth function ψ on M , we have

ψb ⊙ Pψc⊙g(ψ
a
⊙ e) = Pg(e),

where

ψa ⊙ e = (ψa1e1, ..., ψ
akek).

A differential system will be said conformally covariant if it can be
written in the form Pg(e) = f , for a conformally covariant operator Pg.
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5.2. The equations. We specify here the equations related to the
Hamiltonian constraint ρ(g,K) = 0 and the momentum constraint
J(g,K) = 0, in some modified gravity theories.

The constraints equations for the general Lovelock gravity can be
found in [3] pages 692-693 (a reedition of [2] pages 56-57). We do not
reproduce them here but choose to only details the Einstein-Gauss-
Bonnet particular case.

Einstein-Gauss-Bonnet constraint: The following expressions can
be found in [8] for instance:

ρ(g,K) =M + αGB(M
2
− 4MijM

ij +MijklM
ijkl),

−1

2
Ji(g,K) = Ni + 2αGB(MNi − 2M j

iNj + 2MklNikl −Mi
jklNklj),

where
Mijkl = Rijkl(g) +KikKjl −KilKjk,

Mij = Rij(g) + TrgKKij −KilK
l
j ,

M = R(g) + (TrgK)2 −KijK
ij ,

Nijk = ∇iKjk −∇jKik

Ni = ∇jK
j
i −∇iTrgK,

and αGB is a coupling constant, equal to zero in the Einstein theory.

f(R) gravity constraint: The following equations can be found in [7] :

ρ(g,K) = R(g)−KijK
ij + (TrgK)2

− f ′(R)−1[2∆gf
′(R) + 2TrgKf

′′(R)Ṙ − f(R)−Rf ′(R)],

1

2
Jj(g,K) = −∇

iKij+∇j TrgK−f ′(R)−1
∇j(f

′′(R)Ṙ)−Ki
j∇i(ln(f

′(R))),

where ∆ = ∇i∇i, and R, Ṙ are respectively the initial data2 of the
scalar curvature and the time derivative of the scalar curvature of the
space time. More precisely Ṙ will be equal to LnR, where n will be the
futur unit normal to the initial data of the space-time when evolved.
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[6] A. Lichnerowicz, L’intégration des équations de la gravitation relativiste et le
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