On the $C^1$ and $C^2$-convergence to weak K.A.M. solutions

Abstract : We introduce a notion of upper Green regular solutions to the Lax-Oleinik semi-group that is defined on the set of $C^0$ functions of a closed manifold via a Tonelli Lagrangian. Then we prove some weak $C^2$ convergence results to such a solution for a large class of approximated solutions as: 1) the discounted solution ; 2) the image of a $C^0$ function by the Lax-Oleinik semi-group; 3) the weak K.A.M. solutions for perturbed cohomology class. This kind of convergence implies the convergence in measure of the second derivatives. Moreover, we provide an example that is not upper Green regular and to which we have $C^1$ convergence but not convergence in measure of the second derivatives.
Document type :
Preprints, Working Papers, ...
Complete list of metadatas

https://hal-univ-avignon.archives-ouvertes.fr/hal-02025882
Contributor : Marie-Claude Arnaud <>
Submitted on : Tuesday, February 19, 2019 - 10:35:03 PM
Last modification on : Saturday, March 23, 2019 - 1:20:53 AM

Links full text

Identifiers

  • HAL Id : hal-02025882, version 1
  • ARXIV : 1902.06108

Collections

Citation

Marie-Claude Arnaud, Xifeng Su. On the $C^1$ and $C^2$-convergence to weak K.A.M. solutions. 2019. ⟨hal-02025882⟩

Share

Metrics

Record views

92