Y. Araki, W. Bornatsch, A. Brauner, T. Clark, G. Dräger et al., Metabolism of imidacloprid in plants, the 8 th International Congress Pesticide and Chemistry, 1994.

S. D. Buckingham, M. L. Balk, S. C. Lummis, P. Jewess, and D. B. Sattelle, Actions of nitromethylenes on an alpha-bungarotoxin-sensitive neuronal nicotinic acetylcholine receptor, Neuropharmacol, vol.34, pp.591-597, 1995.

M. European, Guideline on test methods for evaluating the side-effects of plant protection products on honeybees, Bulletin OEPP/EPPO Bulletin, vol.22, pp.203-215, 1992.

S. Kagabu and H. Matsuno, Chloronicotinyl insecticides. 8. Crystal and molecular structures of imidacloprid and analogous compounds, J. Agric. Food Chem, vol.45, pp.276-281, 1997.

O. Klein, Presented at the 8 th International Congress Pesticide and Chemistry,Whashington, Poster session 2B, p.367, 1994.

W. Leicht, Imidacloprid a chloronicotinyl insecticide, biological activity and agricultural significance, Pflanz. Nachr. Bayer, vol.49, pp.79-84, 1996.

M. Y. Liu and J. E. Casida, High affinity binding of [ 3 H]-imidacloprid in the insect acetylcholine receptor. Pestic, Biochem. Physiol, vol.46, pp.40-46, 1993.

M. Y. Liu, J. Landford, and J. E. Casida, Relevance of [ 3 H]-imidacloprid binding site in house fly head acetylcholine receptor to insecticidal activity of 2-nitromethylene-and 2-nitroimino-imidazolidines. Pestic, Biochem. Physiol, vol.46, pp.200-206, 1993.

D. Mota-sanchez, R. M. Hollingworth, M. E. Whalon, and E. Grafius, Metabolism and fate od 14 C-imidacloprid in Colorado potato beetle resistant to imidacloprid, Annual Meeting, 2001.

R. Nauen, K. Tiejen, K. Wagner, E. , and A. , Efficacy of plant metabolites of imidacloprid against Myzus persicae and Aphis gossypii (Homoptera: Aphididae), Pestic. Sci, vol.52, pp.53-57, 1998.

R. Nauen, U. Reckmann, S. Armborst, H. P. Stupp, E. et al., Whitefly-active metabolites of imidacloprid: biological efficacy and translocation in cotton plants, Pestic. Sci, vol.55, pp.265-271, 1999.

R. Nauen, U. Ebbinghaus-kintscher, and R. Schmuck, Toxicity and nicotinic acetylcholine receptor interaction of imidacloprid and its metabolites in Apis mellifera (Hymenoptera: Apidae), Pest. Manag. Sci, vol.57, pp.577-586, 2001.

E. D. Pilling, K. A. Bromley-challenor, C. H. Walker, and P. C. Jepson, Mechanism of synergism between the pyrethroid insecticide l-cyhalothrin and the imidazole fungicide prochloraz, in the honeybee, Apis mellifera L.). Pestic. Biochem. Physiol, vol.51, pp.1-11, 1995.

I. M. Rietjens, C. Den-besten, R. P. Hanzlik, and P. J. Van-bladeren, Cytochrome P450-catalysed oxidation of halobenzene derivatives, Chem. Res. Toxicol, vol.10, pp.629-635, 1997.

T. R. Roberts and D. H. Hutson, Metabolics pathways of agrochemicals, Insecticides and fungicides, pp.111-120, 1999.

J. Rouchaud, F. Gustin, and A. Wauters, Imidacloprid insecticide soil metabolism in sugar beet field crops, Bull. Environ.Cont. Toxicol, vol.56, pp.29-36, 1996.

S. Suchail, D. Guez, and L. P. Belzunces, Characteristics of imidacloprid toxicity in two Apis mellifera subspecies, Environ. Toxicol. Chem, vol.19, pp.1901-1905, 2000.

S. Suchail, D. Guez, and L. P. Belzunces, Discrepancy between acute and chronic toxicity induced by imidacloprid and its metabolites in Apis mellifera, Environ. Toxicol. Chem, vol.20, pp.2482-2486, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02047800

J. Thyssen and L. Machemer, Imidacloprid: toxicology and metabolism. In Nicotinoïd insecticides and the nicotinic acetylcholine receptor, pp.213-222, 1999.
DOI : 10.1007/978-4-431-67933-2_9

M. Tomizawa and J. E. Casida, Imidacloprid, thiacloprid, and their imine derivatives up-regulate the ?4?2 nicotinic acetylcholine receptor in M10 cells, Toxicol. Appl. Pharm, vol.169, pp.114-120, 2000.

I. Yamamoto, M. Tomizawa, T. Saito, T. Miyamoto, E. C. Walcott et al., Structural factors contributing to insecticidal and selective actions of neonicotinoids, Arch. Insect Biochem. Physiol, vol.37, pp.24-32, 1998.

T. Woolf and F. P. Guengerich, Rat liver cytochrome P-450 isoenzymes as catalysts of aldrin epoxidation in reconstituted monooxygenase systems and microsomes, Biochem. Pharmacol, vol.36, pp.2581-2586, 1987.

, give urea derivative. 3: Hydroxylation of the imidazolidine ring to form

, -dihydroxy-imidacloprid can also result from epoxy derivative formed from desaturated molecules. Dehydratation of 4/5-hydroxy-imidacloprid and/or desaturation of the imidazolidine moiety of imidacloprid to form olefin, /5-hydroxy-imidacloprid and further 4,5-dihydroxy-imidacloprid. 4/5-hydroxy-imidacloprid and, vol.4