.. ?j-=-1,

, N (k1)?1 ), z 1 ) (f j (z 1 ), f j

.. ?j-=-1, m(1) ? 1 k 2 ) (f (r 2,j ), r 2,j+1 ) ?j = 1

, N (k2)?1 ), z 2 ) (f j (z 2 ), f j

.. ?j-=-1,

, Moreover, by construction, for any couple (q, p) given above, the distance d(q, p) < 2. Consequently, applying Lemma 13 in [12], we obtain a homeomorphism ? : M ? M such that d C 0 (? ? f, f ) < 4?? and ?(q) = p for any such a couple (q, p), By perturbing f a little, we can assume that for every (q i , p i ), (q j , p j ) with i = j, it holds that q i = q j and p i = p j

, > 0 of iterations of ? ? f , we have (? ? f ) N (f ?1 (y)) = f (z)

, Let {B ? } be a finite covering of GR(f ) by open convex balls such that, for any ?, B ? ? U and diam(B ? ) < ?

, By shrinking the balls {B ? } if necessary, we can assume that the {U ? } have pairwise disjoint closures. We now introduce the following equivalence relation on pairs of {U ? }. We say that U ?1 is related to U ?2 if either U ?1 = U ?2 or there is a common cycle containing both U ?1 and U ?2, We denote by {U ? } the connected components of ? B ?

E. Akin, The General Topology of Dynamical Systems, Graduate Studies in Mathematics, vol.1

E. ;. Akin and J. Auslander, Generalized recurrence, compactifications, and the Lyapunov topology, Studia Math, vol.201, issue.1, pp.49-63, 2010.
DOI : 10.4064/sm201-1-4

URL : https://www.impan.pl/shop/publication/transaction/download/product/90043?download.pdf

J. Auslander, Generalized recurrence in dynamical systems, Contributions to Differential Equations, vol.3, pp.65-74, 1964.

L. ;. Block and J. E. Franke, The chain recurrent set, attractors, and explosions. Ergodic Theory Dynam, Systems, vol.5, issue.3, pp.321-327, 1985.
DOI : 10.1017/s0143385700002972

URL : https://www.cambridge.org/core/services/aop-cambridge-core/content/view/811042CFC58A958A88B3DBB4DA3CD0A6/S0143385700002972a.pdf/div-class-title-the-chain-recurrent-set-attractors-and-explosions-div.pdf

D. Vries, Topological dynamical systems. An introduction to the dynamics of continuous mappings, De Gruyter Studies in Mathematics, vol.59, 2014.

R. Easton, Chain transitivity and the domain of influence of an invariant set. The structure of attractors in dynamical systems, Lecture Notes in Math, vol.668, pp.95-102, 1978.

A. ;. Fathi and P. Pageault, Aubry-Mather theory for homeomorphisms. Ergodic Theory Dynam, Systems, vol.35, issue.4, pp.1187-1207, 2015.

J. Franks, A variation on the Poincaré-Birkhoff theorem. Hamiltonian dynamical systems (Boulder, Contemp. Math, vol.81, pp.111-117, 1987.

M. Hurley, Properties of attractors of generic homeomorphisms. Ergodic Theory Dynam, Systems, vol.16, issue.6, pp.1297-1310, 1996.

A. ;. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, 1995.

Z. Nitecki, Differentiable dynamics. An introduction to the orbit structure of diffeomorphisms, 1971.

Z. ;. Nitecki and M. Shub, Filtrations, decompositions, and explosions, Amer. J. Math, vol.97, issue.4, pp.1029-1047, 1975.
DOI : 10.2307/2373686

J. Palis, ?-explosions, Proc. Amer. Math. Soc, vol.27, pp.85-90, 1971.

C. ;. Pugh and M. Shub, The ?-Stability Theorem for Flows, Invent. Math, vol.11, pp.150-158, 1970.

M. ;. Shub, S. Smale, . Beyond, and . Hyperbolicity, Annals of Mathematics, vol.96, issue.3, pp.576-591, 1972.

P. Walters, Anosov diffeomorphisms are topologically stable, Topology, vol.9, pp.71-78, 1970.
DOI : 10.1016/0040-9383(70)90051-0

URL : https://doi.org/10.1016/0040-9383(70)90051-0

P. Walters, On the pseudo-orbit tracing property and its relationship to stability. The structure of attractors in dynamical systems, Proc. Conf., North Dakota State Univ, vol.668, pp.231-244, 1977.
DOI : 10.1007/bfb0101795

URL : https://polipapers.upv.es/index.php/AGT/article/download/7731/9781

L. Wen, Differentiable dynamical systems. An introduction to structural stability and hyperbolicity, Graduate Studies in Mathematics, vol.173, p.192, 2016.

J. Wiseman, The generalized recurrent set and strong chain recurrence. Ergodic Theory Dynam, Systems, vol.38, issue.2, pp.788-800, 2018.

K. Yano, Topologically stable homeomorphisms on the circle, Nagoya Math. J, vol.79, pp.145-149, 1980.
DOI : 10.1017/s0027763000018997

URL : https://www.cambridge.org/core/services/aop-cambridge-core/content/view/D96AA0EDC05D4492526B32836F975989/S0027763000018997a.pdf/div-class-title-topologically-stable-homeomorphisms-of-the-circle-div.pdf

K. Yokoi, On strong chain recurrence for maps, Annales Polonici Mathematici, vol.114, issue.2, pp.165-177, 2015.
DOI : 10.4064/ap114-2-6