A. Albert-green, Joint Models for Spatial and Spatio-Temporal Point Processes, 2016.

A. Albert-green, W. J. Braun, C. B. Dean, and C. Miller, , 2019.

, A hierarchical point process with application to storm cell modelling. Canad, J. Stat, vol.47, issue.1, pp.46-64

G. K. Ambler, Dominated Coupling from the Past and Some Extensions of the Area-Interaction Process, 2002.

G. K. Ambler and B. Silverman, Perfect simulation of spatial point processes using dominated coupling from the past with application to a multiscale area-interaction point process, University of Bristol, Department of Mathematics, 2004.

G. K. Ambler and B. Silverman, Perfect simulation using dominated coupling from the past with application to area-interaction point processes and wavelet thresholding, Probability and Mathematical Genetics, 2010.

I. T. Andersen and U. Hahn, Matern thinned Cox processes, Spat. Stat, vol.15, pp.1-21, 2016.

A. J. Baddeley and M. Van-lieshout, Area-interaction point processes, Ann. I. Stat. Math, vol.47, issue.4, pp.601-619, 1995.

A. Baddeley, J. Moller, and R. Waagepetersen, Non-and semi-parametric estimation of interaction in inhomogeneous point patterns, Stat. Neer, vol.54, pp.329-350, 2000.

A. Baddeley, E. Rubak, and R. Turner, Spatial Point Patterns: Methodology and Applications with R, 2015.

A. Baddeley, R. Turner, J. Mateu, and A. Bevan, Hybrids of gibbs point process models and their implementation, J. Stat. Soft, vol.55, issue.11, pp.1-43, 2013.

N. Badreldin, J. Uria-diez, J. Mateu, A. Youssef, C. Stal et al., A spatial pattern analysis of the halophytic species distribution in an arid coastal environment, Env. Mon. Ass, vol.187, pp.1-15, 2015.

M. S. Bartlett, Processus stochastiques ponctuels. Ann. Inst. Henri Poincaré, vol.14, pp.35-60, 1954.

M. S. Bartlett, An Introduction to Stochastic Processes, 1955.

D. Bosq, Nonparametric Statistics for Stochastic Processes. Lecture Notes in Statistics, 1998.

A. Brix and J. Chadoeuf, Spatio-temporal modeling of weeds and shot-noise G Cox processes, Biom. J, vol.44, pp.83-99, 2000.

A. Brix and J. Møller, Space-time multitype log Gaussian Cox processes with a view to modelling weed data. Scand, J. Stat, vol.28, pp.471-488, 2001.

A. Brix and P. J. Diggle, Spatiotemporal prediction for log-Gaussian Cox processes, J. R. Stat. Soc. Ser. B Stat. Methodol, vol.63, issue.4, pp.823-841, 2001.

A. Brix and W. S. Kendall, Simulation of cluster point processes without edge effects, Adv. Appl. Prob, vol.34, pp.267-280, 2002.

S. N. Chiu, D. Stoyan, W. S. Kendall, and J. Mecke, , 2013.

, Stochastic Geometry and its Applications

M. Clyde and D. Strauss, Logistic regression for spatial pairpotential models, Spat. Stat. Imaging, vol.20, pp.14-30, 1991.

J. Coeurjolly, J. Møller, and R. P. Waagepetersen, A tutorial on Palm distributions for spatial point processes, Int. Stat. Review, vol.85, issue.3, pp.404-420, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01241277

J. Coeurjolly and F. Lavancier, Understanding Spatial Point Patterns Through Intensity and Conditional Intensities, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02369569

D. Coupier, Stochastic Geometry, Lecture Notes in Mathematics, p.2237
URL : https://hal.archives-ouvertes.fr/hal-02377541

. Springer, , pp.45-85

D. R. Cox, Some statistical methods connected with series of events (with discussion), J. Roy. Statist. Soc. Ser. B, vol.17, pp.129-164, 1955.

D. R. Cox, Renewal Theory, 1962.

D. R. Cox, The statistical analysis of dependencies in point processes, Stochastic Point Processes, pp.55-66, 1972.

D. R. Cox and V. Isham, , 1980.

O. Cronie and M. Van-lieshout, A J-function for inhomogeneous spatio-temporal point processes. Scand, J. Stat, vol.42, issue.2, pp.562-579, 2015.

D. J. Daley and D. Vere-jones, An Introduction to the Theory of Point Processes, vol.I, 2003.

D. Dereudre, Introduction to the theory of Gibbs point processes, 2019.

, Stochastic Geometry. Lecture Notes in Mathematics 2237 Springer, pp.181-229

P. J. Diggle, Statistical Analysis of Spatial Point Patterns, 1983.

P. J. Diggle, Statistical Analysis of Spatial Point Patterns, 2003.

P. J. Diggle, Spatio-temporal point processes, partial likelihood, foot-and-mouth, Stat. Meth. Med. Res, vol.15, pp.325-336, 2006.

P. J. Diggle and E. Gabriel, Spatio-temporal point processes. Handbook of Spatial Statistics, pp.449-461, 2010.

P. J. Diggle, P. Moraga, B. Rowlingson, and B. M. Taylor, Spatial and spatio-temporal log-Gaussian Cox processes: extending the geostatistical paradigm, Statist. Sci, vol.28, issue.4, pp.542-563, 2013.

P. J. Diggle, Statistical Analysis of Spatial and Spatio-Temporal Point Patterns, 2013.

W. Feller, An Introduction to Probability Theory and Its Applications, 1950.

E. Gabriel, B. Rowlingson, and P. J. Diggle, stpp: An R package for plotting, simulating and analyzing spatio-temporal point patterns, J. Stat. Softw, vol.53, issue.2, pp.1-29, 2013.

E. Gabriel, Estimating second-order characteristics of inhomogeneous spatio-temporal point processes, Meth. and Comp. App. Prob, vol.16, issue.2, pp.411-431, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00818145

E. Gabriel and P. J. Diggle, Second-order analysis of inhomogeneous spatio-temporal point process data, Stat. Neerl, vol.18, pp.505-544, 2009.

E. Gabriel, T. Opitz, and F. Bonneu, Detecting and modeling multi-scale space-time structures: the case of wildfire occurrences, J. Fran. Stat. Soc, vol.158, issue.3, pp.86-105, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01401955

C. J. Geyer, Likelihood Inference for Spatial Point Processes: Likelihood and Computation, 1999.

, Stochastic Geometry: Likelihood and Computation 141-172

J. Goldstein, M. Haran, I. Simeonov, J. Fricks, and F. Chiaromonte, An attraction-repulsion point process model for respiratory syncytial virus infections, Biom, vol.71, issue.2, pp.376-385, 2015.

J. A. Gonzalez, F. J. Rodriguez-cortes, O. Cronie, and J. Mateu, Spatio-temporal point process statistics: A review, Spat. Stat, vol.18, pp.505-544, 2016.

H. Habel, A. Sarkka, M. Rudemo, C. H. Blomqvist, E. Olsson et al., Colloidal particle aggregation in three dimensions, J. Micro, vol.275, issue.3, pp.149-158, 2019.

U. Hahn and E. B. Vedel-jensen, Hidden second-order stationary spatial point processes. Scand, J. Stat, vol.43, issue.2, pp.455-475, 2015.

A. G. Hawkes, Spectra of some self-exciting and mutually exciting point processes, Biometrika, vol.58, pp.83-90, 1971.

A. Iftimi, P. Montes, J. Mateu, and C. Ayyad, Measuring spatial inhomogeneity at different spatial scales using Hybrids of Gibbs point process models, Stoch. Env. Res. Ris. Ass, vol.31, issue.6, pp.1455-1469, 2017.

A. Iftimi, M. C. Van-lieshout, and F. Montes, A multi-scale area-interaction model for spatio-temporal point patterns, Spat. Stat, vol.26, pp.38-55, 2018.

J. Illian, S. Martino, S. Sorbye, J. B. Gallego-fernandez, M. Zunzunegui et al., Fitting complex ecological point process models with integrated nested Laplace approximation, Meth. Eco. Evo, vol.4, pp.305-315, 2013.

J. Illian, A. Penttinen, H. Stoyan, and D. Stoyan, Statistical Analysis and Modelling of Spatial Point Patterns, 2008.

J. Illian, S. Sorbye, and H. Rue, A toolbox for fitting complex spatial point process models using integrated nested Laplace approximation (INLA), Ann. Appl. Stat, vol.6, issue.4, pp.1499-1530, 2012.

J. Illian, S. Sorbye, H. Rue, and D. Hendrichsen, Using INLA to fit a complex point process model with temporally varying effects -a case study, J. Env. Stat, vol.3, pp.1-25, 2012.

J. F. Kingman, Poisson Processes. Oxford Studies in Probability 3, 1993.

J. F. Kingman, Poisson processes revisited, Probab. Math. Statist, vol.26, pp.77-95, 2006.

F. Lavancier, J. Møller, and E. Rubak, Determinantal point process models and statistical inference, J. Roy. Stat. Soc. B, vol.77, pp.853-877, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01241077

F. Lavancier and J. Møller, Modelling aggregation on the large scale and regularity on the small scale in spatial point pattern datasets. Scan, J. Stat, vol.43, pp.587-609, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01155646

S. A. Levin, The problem of pattern and scale in ecology, Ecology, vol.73, pp.1943-1967, 1992.

O. Macchi, The coincidence approach to stochastic point processes, Adv. Appl. Probab, vol.7, pp.83-122, 1975.

B. Matérn, Spatial Variation. Lectures Notes in Statistics, 1960.

J. Møller, A. R. Syversveen, and R. P. Waagepetersen, Log Gaussian Cox processes, Scand. J. Stat, vol.25, pp.451-482, 1998.

J. Møller, Shot noise Cox processes, Adv. Appl. Prob, vol.35, issue.3, pp.614-640, 2003.

J. Møller and G. L. Torrisi, Generalised shot noise Cox processes, Adv. Appl. Prob, vol.37, pp.48-74, 2005.

J. Møller and C. Diaz-avalos, Structured spatio-temporal shot-noise Cox point process models, with a view to modelling forest fires, Scand. J. of Stat, vol.37, issue.1, pp.2-25, 2010.

J. Møller and R. P. Waagepetersen, Statistical Inference and Simulation for Spatial Point Processes, 2004.

J. Neyman and E. L. Scott, Statistical approach to problems of cosmology, J. Roy. Statist. Soc. Ser. B, vol.20, pp.1-29, 1958.

G. F. Nightingale, J. B. Illian, R. King, and P. Nightingale, Area interaction point processes for bivariate point patterns in a Bayesian context, J. of Envir. Stat, vol.9, issue.2, 2019.

Y. Ogata and M. Tanemura, Estimation of interaction potentials of spatial point patterns through the maximum likelihood procedure, 1981.

, Ann. Inst. Stat. Math, vol.33, issue.1, pp.315-338

T. Opitz, F. Bonneu, and E. Gabriel, Point-process based Bayesian modeling of space-time structures of forest fire occurrences in Mediterranean France, Spat. Stat, p.100429, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02098412

C. Palm, , 1943.

F. Papangelou, The conditional intensity of general point processes and an application to line processes, Prob. Theo. Rel. Fiel, vol.28, issue.3, pp.207-226, 1974.

T. Pei, J. Gao, T. Ma, and C. Zhou, Multi-scale decomposition of point process data, GeoInformatica, vol.16, issue.4, pp.625-652, 2012.

A. Penttinen, Modelling Interaction in Spatial Point Patterns: Parameter Estimation by the Maximum Likelihood Method, Jyvaskyla Studies in Computer Science, Economics, and Statistics, 1984.

N. Picard, A. Bar-hen, F. Mortier, and J. Chadoeuf, The multi-scale marked area-interaction point process: a model for the spatial pattern of trees, Scand. J. Stat, vol.36, pp.23-41, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02655442

C. J. Preston, Random Fields, Lecture Notes in Mathematics, vol.534, 1976.

T. Rajala, D. J. Murrell, and S. C. Olhede, Detecting multivariate interactions in spatial point patterns with Gibbs mmodels and variate selection, Appl. Statist, vol.67, issue.5, pp.1237-1273, 2018.

M. Raeisi, F. Bonneu, and E. Gabriel, A spatio-temporal multi-scale model for Geyer saturation point process: application to forest fire occurrences, 2019.

D. Ruelle, Statistical Mechanics: Rigorous Results, W.A. Benjamin, 1969.

M. Siino, G. Adelfio, J. Mateu, and A. D'alessandro, , 2017.

, Spatial pattern analysis using hybrid models: an application to the Hellenic seismicity, Stoch. Env. Res. Ris. Ass, vol.31, issue.7, pp.1633-1648

M. Siino, A. D'alessandro, G. Adelfio, S. Scudero, and M. Chiodi, Multiscale processes to describe the eastern sicily seismic sequences, Ann. Geo, vol.61, issue.2, 2018.

S. H. Sorbye, J. B. Illian, D. P. Simpson, D. Burslem, and H. Rue, Careful prior specification avoids incautious inference for log, 2019.

, Gaussian Cox point processes, J. R. Stat. Soc. Ser. C. Appl. Stat, vol.68, issue.3, pp.543-564

D. Stoyan, Interrupted point processes, Biometrical. J, vol.21, pp.607-610, 1979.

D. J. Strauss, A model for clustering, Biometrika, vol.62, pp.467-475, 1975.

M. Thomas, A generalization of Poisson's binomial limit for use in ecology, Biometrika, vol.36, pp.18-25, 1949.

M. Van-lieshout, Markov Point Processes and Their Applications, 2000.

M. Van-lieshout, Theory of Spatial Statistics, 2019.

T. Wiegand, A. Huth, and I. Martinez, Recruitment in tropical tree species: Revealing complex spatial patterns, Ame. Nat, vol.174, pp.106-140, 2009.

T. Wiegand, N. Gunatillekem, and T. Okudam, Analyzing the spatial structure of a Sri Lankan tree species with multiple scales of clustering, Eco, vol.88, pp.3088-3102, 2007.

C. Y. Yau and J. M. Loh, A genralization of the Neyman-Scott process, Stat. Sinica, vol.22, pp.1717-1736, 2012.