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Abstract

Photosynthetic microorganisms are known to adjust their photosynthetic capacity according to light
intensity. This so-called photoacclimation process may correspond at equilibrium to the optimal behavior in
order to maximize growth. But its dynamics under varying condition remains less understood. To tackle
this problem, we propose here a resource allocation model, at coarse-grained, to represent microalgae
growth and photoacclimation. Using the Pontryagin maximum principle and numerical simulations, we
determine the optimal strategy of resource allocation in order to optimize microalgal growth rate over a
time horizon. We show that, after a transient, the optimal trajectory approaches the optimal steady state,
a behavior known as the turnpike property. Then, the model is fitted with experimental data, resulting
in a bi-level optimization problem which is solved numerically. The fitted trajectory represents well a
Dunaliella tertiolecta culture facing a light down-shift. Finally, we compute the optimal trajectory under
day/night cycle and show that the synthesis of the photosynthetic apparatus starts a few hours before
dawn. This anticipatory behavior has actually been observed both in the laboratory and in the field. This
shows the algal predictive capacity and the interest of our method which predicts this phenomenon.

Keywords: Turnpike, Bi-level optimization, Microalgal growth model, Photosynthetic apparatus, Anticipa-
tory behavior.

1 Introduction

Microalgae are key players in the ocean [11], and they also represent a promising resource for various markets
(feed, health, etc) [32]. These microorganisms adjust their photosynthetic apparatus according to the light
they receiveid: e.g., if light is in excess, the photosynthetic apparatus will decrease [21]. This so-called pho-
toacclimation process is an important factor to consider when estimating net primary production in the ocean
from satellite chlorophyll measurements [16], or when optimizing microalgal production given the interplay
between self-shading and light limitation [4, 9].

Mathematical models have been proposed to understand and predict microalgal photoacclimation. They
can be divided into two types: empirical models, mainly based on experimental observations (e.g., [13, 12, 4, 27,
33]), and optimality-based models. The latter type relies on the hypothesis, widespread for predictive models
in biology, that evolution has resulted in organisms having optimal performances [35]. Microbial growth can
thus be formalized as an optimization problem, where resources should be allocated between different sectors
in order to maximize the growth rate for exemple. In this framework, photoacclimation models based on static
optimization have been proposed by [31, 2, 14, 19, 10, 43]. These models correctly represent photoacclimation in
a constant environement. Nonetheless, light supply is always changing, because of the sunpath, the presence
of clouds, the position of the cell in the water column, etc. In this context, [37] have determined a fixed
resource allocation which maximizes the growth over a time window under light fluctuations. However, this
study still neglects photoacclimation dynamics. Instantaneous optimization has been proposed to represent
photoacclimation under variable conditions [42]. That is, at each instant, the chlorophyll content is adjusted
so as to maximize instantaneous growth. It appears that such a strategy is not necessarily optimal over the
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long term. Generally, one can determine a strategy to maximize growth over a time window. This can be
formalized as an optimal control problem, as proposed for example to represent bacterial growth [28, 41, 15].
Concerning photosynthetic microorganisms, to the best of our knowledge, resource allocation optimization
over a time window has been tackled only by [8] and [30], focusing on carbon storage over a day-night cycle
(and not photoacclimation).

Here a coarse-grained model is proposed to represent microalgae growth and photoacclimation as a resource
allocation problem. We first determine the optimal allocation strategy in static conditions, resulting in the
classic photoacclimation relationship: the more the light increases, the more the photosynthetic apparatus
decreases. Then, we determine the optimal allocation strategy under dynamic conditions, when microalgae
face a light shift. Using optimal control theory (Pontryagin’ Principle) and numerical simulations (direct
methods), we show that the optimal trajectory corresponds to a turnpike, i.e., to quickly adjust the allocation
close to the optimal steady state. Then, following our prelimaniry work [22], a parameter estimation method -
leading to a bi-level optimization problem - is proposed and carried out. This results in a first proof of concept
of how to calibrate dynamic resource allocation model. Finally, optimal allocation strategy under day/night
cycles is determined numerically. This reveals that the synthesis of the photosynthetic apparatus begins a
few hours before dawn. This behavior is actually observed in several laboratory and field studies [44, 20, 18],
revealing the algal anticipation capacity.

2 Model development

A coarse-grained model of microalgae growth and photoacclimation is proposed, inspired by the works of
[31, 15].

2.1 Biochemical reactions

The model is based on two macroreactions, represented in Figure 1. First, CO2 is fixed to produce small
carbon precursors C (in g):

CO2
vP−→ C,

where vP corresponds to the photosynthetic rate (in g/(g biomass·d)).
The second reaction corresponds to the synthesis of macromolecules, divided into two sectors: the photo-

synthetic apparatus, including the photosystems and the enzymes of the Calvin cycles P (in g) and the gene
expression machinery (mainly the ribosomes) R (in g):

C
vR−→ uP + (1− u)R,

where vR (in g/(g biomass·d)) corresponds to the rates of macromolecule synthesis, and u ∈ [0, 1] is the
allocation variable representing the part of the flux going to the synthesis of the photosynthetic apparatus.
Considering biomass B = C + P +R, a mass balance gives the following dynamics:∣∣∣∣∣∣∣∣∣

dC
dt = vPB − vRB,
dP
dt = uvRB,
dR
dt = (1− u)vRB,
dB
dt = vPB.

Now denoting in lowercase the mass fractions (in g/g biomass), i.e., c = C/B, p = P/B, and r = R/B, we
finally get ∣∣∣∣∣∣∣

dc
dt = 1

B
dC
dt −

C
B2

dB
dt = vP (1− c)− vR,

dp
dt = 1

B
dP
dt −

P
B2

dB
dt = uvR − pvP ,

dr
dt = 1

B
dR
dt −

R
B2

dB
dt = (1− u)vR − rvP .
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Figure 1: Scheme of the coarse-grained model to represent photoacclimation in microalgae. We assume that
microalgae maximize their growth rate by adjusting the resources allocated to the photosyntetic apparatus
(through the allocation variable u ∈ [0, 1]).

2.2 Reaction rates

For the kinetics, we consider that the photosynthetic rate is a function of the photosynthetic apparatus mass
fraction and of the light intensity I, i.e., vP (p, I), with the following assumption

Hypothesis 1. The function vP : [0, 1]× R+ → R+ is of class C2 and satisfies

• For every p ∈ [0, 1], vP (p, 0) = 0 ;

• For every I > 0, vP (0, I) = 0 ;

• For every I > 0, the mapping vP (·, I) is strictly concave increasing over the interval [0, 1].

Typically, Michaelis-Menten’s function

vP (p, I) = kP
pI

K + pI
, (1)

satisfies Hypothesis 1. In this expression, the photosynthetic rate is a function of the product pI, which
corresponds to the energy absorbed by the cells. This is in line with mechanistic models of photoacclimation,
where the rate depends on the product of the chlorophyll content times the light intensity (see e.g., [13]).

The rate of macromolecule synthesis depends on the mass fractions of carbon precursors and the gene
expression machinery. A simple mass action kinetics is considered:

vR(c, r) = kRcr.

2.3 Problem statement

Given that c+ p+ r = 1, one variable can be removed and we finally get:∣∣∣∣∣ dc
dt = vP (p, I)(1− c)− kRc(1− c− p),
dp
dt = ukRc(1− c− p)− pvP (p, I).

(2)

Before formalizing the resource allocation problem, we show that the system (2) satisfies the following invari-
ance property. Let us then introduce the set

Ω := {(c, p) ∈ (0, 1)× (0, 1) ; c+ p ≤ 1}.
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Lemma 1. The set Ω is invariant by (2).

Proof. Whenever c = 0 (resp. p = 0), it is easily seen that ċ = vP (p, I) > 0 (resp. ṗ = u(t)kRc(1 − c) > 0),
so the positive orthant is invariant. In addition, one has ċ + ṗ = 0 along c + p = 1 so that the line segment
L := {(c, 1− c) ; c ∈ [0, 1]} is also invariant. This ends the proof.

Since trajectories of (2) starting in L remain in L, we suppose next that initial conditions belong to the
(open) invariant domain:

D := {(c, p) ∈ (0, 1)× (0, 1) ; c+ p < 1}.

We assume that microalgae have acquired through evolution optimal strategy, i.e., they regulate their al-
location of resources in order to maximize their growth. To represent this behavior, we are interested in
maximizing the photosynthetic rate vP w.r.t. the allocation of macromolecules synthesis u (corresponding to
our control) over a given time period. Thus, we consider the admissible control set defined as:

U = {u : [0, T ]→ [0, 1] ; u meas.},

in which T > 0 is our given time period. The optimization problem under consideration can be then gathered
into:

max
u(·)∈U

J(u) :=

∫ T

0

vP (p(t), I) dt, (P)

where (c(·), p(·)) is the unique solution of (2) starting at a given point (c0, p0) ∈ D for a given control u ∈ U .

3 Optimal allocation at equilibrium

Our first objective is to determine the optimal allocation at equilibrium, for a constant light intensity I > 0.
This corresponds to the static optimization problem:

max
u∈[0,1]

J̄(u) := vP (pu, I), (3)

where (cu, pu) is a steady state of (2) associated with the constant control u and a constant light I, i.e.,

0 = vP (pu, I)(1− cu)− kRcu(1− cu − pu),

0 = ukRcu(1− cu − pu)− vP (pu, I)pu.
(4)

Lemma 2. There is a unique solution u∗ ∈ [0, 1] to (3)-(4) satisfying

vP ((u∗)2, I) = kR(1− u∗)2.

In addition, the corresponding steady-state (c∗, p∗) of (2) is given by

c∗ = 1− u∗,
p∗ = (u∗)2.

(5)

Proof. Let us first show that u = 0 and u = 1 are not optimal solutions of (3)-(4). If u = 0, then either
vP (pu, I) = 0 or pu = 0 implying in both cases that the cost J̄(u) is zero. If now u = 1, we obtain
vP (pu, I)(1 − cu − pu) = 0 and either pu = 0 or 1 − cu − pu = 0. As previously, we can exclude the
case pu = 0. But, if now 1− cu − pu = 0 (with pu 6= 0), we obtain vP (pu, I)(1− cu) = 0, thus 1− cu = 0 and
from (4), we get pu = 0 which is not possible. Hence, u = 1 is also not optimal.

Let us go back to Problem (3)-(4). From (4), we obtain that any admissible solution of (4) satisfies
pu = u(1− cu). Replacing cu by its value into the first equation then gives

g(p, u) := vP (p, I)− kR
(

1− p

u

)
(1− u) = 0.

Problem (3)-(4) then amounts to maximize u 7→ J̄(u) over [0, 1]. Doing so, we apply the classical Karush-
Kuhn-Tucker conditions (KKT). Because u = 0 and u = 1 are not optimal, we can remove the nonbinding
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constraint u ∈ [0, 1] and take into account one equality constraint g(p, u) = 0. Let then L := J̄ + λg the
Lagrangian associated with (3)-(4). Let u be a maximum of (3)-(4). Then, the stationarity condition

∂L
∂u

= 0,

gives p = u2, and from the equality constraint g(p, u) = 0, we obtain

vP (u2, I) = kR(1− u)2.

Since vP is increasing with vP (0, I) = 0, this equation has a unique solution in (0, 1). The value of (c∗, p∗)
follows.

Using for vP the Michaelis-Menten function given in (1), u∗ is the unique solution in [0, 1] of a polynomial
equation of degree four:

−IkRu4 + 2IkRu
3 + (IkP − kRK − IkR − kRK)u2 + 2kRKu− kRK = 0.

We can compute this solution as a function of the light intensity. We obtain that the optimal photosynthetic
machinery sector at equilibrium p∗ is a decreasing function of light intensity I, in line with experimental
data of steady-state photoacclimation [21], see Fig. 2. Actually, this pattern has already been predicted by
steady-state optimization with similar models (e.g., in [2]).
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Figure 2: Optimal steady-state allocation for the photosynthetic sector p? as a function of light intensity (top),
see Lemma 2. This pattern corresponds to the photoacclimation phenomena [21], as shown for example by
the chlorophyll content measured experimentally for Dunaliella tertiolecta [17] (bottom).

The optimal steady-state enjoys the following stability property (of interest whenever perturbations affect
the system).

Proposition 1. The steady-state (c∗, p∗) of (2) associated with the (constant) control u = u∗ is locally stable
with two negative eigenvalues.

Proof. At a steady-state (c, p) of (2) associated with a constant control u, the Jacobian matrix is[
−vP (p, I)− kR(1− 2c− p) ∂vP

∂p (p, I)(1− c) + kRc

kRu(1− 2c− p) −kRuc− ∂vP
∂p (p, I)p− vP (p, I)

]
,
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and, replacing (c, p, u) by the optimal triplet (c∗, p∗, u∗), it becomes[
0 ∂vP

∂p (p∗, I)u∗ + kR(1− u∗)
−kRu∗(u∗ − 1)2 −kR(1− u∗)− (u∗)2 ∂vP∂p (p∗, I)

]
.

Since u∗ ∈ (0, 1) and ∂vP
∂p > 0, the trace and determinant of this matrix are respectively negative and positive

which shows that it has exactly two negative eigenvalues. This ends the proof.

4 Optimal allocation during a light shift

Our coarse-grained model is now used to study the dynamics of photoacclimation. As a case study, we
consider that light intensity is shifted at t = 0, and then it remains constant. Our objective is to determine
how microalgae can adjust their allocation in order to maximize their growth during the light shift transient.
Formally, we thus consider the optimal control problem (P). In the following, vP (p, I) will be denoted as vP (p)
for sake of simplicity, and v′P corresponds to its derivative with respect to p.

4.1 Application of the Pontryagin Maximum Principle

Optimal controls are derived using the Pontryagin Maximum Principle (see [29]). Note that the existence
of an optimal control is straightforward (due to the linearity of (2) w.r.t. the control), this follows from
Fillipov’s Theorem [7]. Let us now apply Pontryagin’s Principle. Doing so, let H = H(c, p, λc, λp, λ

0, u) be
the Hamiltonian associated with (P) (written as a minimum):

H := kRc(1− c− p) [uλp − λc] + vP (p)
[
λc(1− c)− λpp− λ0

]
.

If u is an optimal control and x(·) = (c(·), p(·)) the associated trajectory, there exists λ0 ≤ 0 and an
absolutely continuous map λ = (λc, λp) : [0, T ]→ R2 such that (λ, λ0) 6= 0 and satisfying the adjoint equation

λ̇ = −∂H∂x , that is: ∣∣∣∣∣ λ̇c = −kR(1− 2c− p)(uλp − λc) + vP (p)λc,

λ̇p = kRc(uλp − λc) + λpvP (p)− v′P (p)
[
λc(1− c)− λpp− λ0

]
.

(6)

In addition, since the state is free at the terminal time, transversality conditions imply

λc(T ) = λp(T ) = 0. (7)

It follows that λ0 < 0. Indeed, if λ0 = 0, the solution of (6) satisfying the transversality condition would satisfy
λc ≡ 0 and λp ≡ 0. This gives us a contradiction because the pair (λ, λ0) must be non-zero. By homogeneity
of the Hamiltonian, we may then assume that λ0 = −1. The Hamiltonian condition in Pontryagin’s Principle
then gives

u(t) ∈ argmaxv∈[0,1]H(x(t), λ(t),−1, v) a.e. t ∈ [0, T ]. (8)

An extremal is a triplet (x(·), λ(·), u(·)) satisfying (2)-(6)-(8) (since λ0 6= 0, we thus only consider normal
extremals in the sequel). From (8), the control law is given by the sign of the switching function

φ := λpkRc(1− c− p),

which gives {
φ(t) > 0 ⇒ u(t) = 1,

φ(t) < 0 ⇒ u(t) = 0.
(9)

A Bang+ arc (resp. Bang−) is a portion of trajectory defined over some time interval [t1, t2] such that u = +1
(resp. u = 0) over [t1, t2]. The next property shows that any optimal control is necessarily of type Bang+ in
some neighborhood of t = T .

Proposition 2. If u is an optimal control of (P), there exists τ ∈ [0, T ) such that one has u(t) = +1 for
every t ∈ [τ, T ].
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Proof. At time t = T , one has φ(T ) = 0. In addition, by differentiating φ w.r.t. t we find

φ̇(T ) = −kRc(T )(1− c(T )− p(T ))v′P (p(T )) < 0

using λc(T ) = λp(T ) = 0. By continuity, there exists τ ∈ [0, T ) such that one has φ > 0 over [τ, T ) implying
the desired property.

The switching function φ may also vanish over a sub-interval [t1, t2] ⊂ [0, T ]. If this happens, we say that
the extremal is singular over [t1, t2] and that a singular arc occurs. The singular arc is the portion of the
corresponding trajectory over [t1, t2]. As we shall next see, such arcs have a significant impact on the optimal
synthesis, that is why, we now study more into details their properties.

4.2 Study of singular arcs

In this section, we provide properties of singular arcs such as Legendre-Clebsch’s condition that will allow us
to have an insight into optimal paths. Recall that, given an optimal trajectory (c(·), p(·)) associated with a
control u(·), along any singular arc defined over a time interval [t1, t2], the inequality

∂

∂u

d2Hu

dt2
≥ 0 (10)

should be fulfilled over [t1, t2]. Inequality (10) expresses the second order necessary optimality condition
(Legendre-Clebsch’s condition). In particular, if (10) fails to hold, no singular arc occurs. In order to check if

(10) is fulfilled, note that ∂
∂u

d2Hu

dt2 coincides with φ̈|u := ∂
∂u φ̈.

Lemma 3. Along any singular arc defined over a time interval [t1, t2], one has:

λc =
−v′P (p)

kRc+ v′P (p)(1− c)
and λ̇c =

−v′P (p)(vP (p) + kR(1− 2c− p))
kRc+ v′P (p)(1− c)

. (11)

Proof. Along a singular arc defined over a time interval [t1, t2], one has φ ≡ 0 over [t1, t2], thus λp ≡ 0 as

well as λ̇p ≡ 0. By differentiating λp and using (6), we find the desired expressions of λc as well as λ̇c along
[t1, t2].

Proposition 3. Along any singular arc defined over a time interval [t1, t2], the Legendre-Clebsch condition
(10) is fulfilled with a strict inequality.

Proof. Recall that along a singular arc λp ≡ 0. By differentiating φ w.r.t. t over [t1, t2], we thus get

φ̇ = −kRc(1− c− p)(kRcλc + v′P (p)(1− c)λc + v′P (p)).

Now, when differentiating φ̇ w.r.t. t, the terms involving explicitly the control u come from the derivate of the
function t 7→ v′P (p(t)) w.r.t. t. Hence, along a singular arc, we find that

φ̈|u = −kRc(1− c− p)v′′P (p)((1− c)λc + 1)ṗ|u

= −k
2
Rc

2(1− c− p)v′′P (p)

kRc+ v′P (p)(1− c)
ṗ|u

= −k
3
Rc

3(1− c− p)2v′′P (p)

kRc+ v′P (p)(1− c)
,

where the second equality follows from (11). Observe that the quantity kRc+ v′P (p)(1− c) is positive. Since

vP is strictly concave, v′′P < 0, and we deduce that φ̈|u > 0. The result follows.

Remark 1. (i) The fact that Legendre-Clebsch’s condition is fulfilled indicates that the optimal synthesis may
exhibit a singular arc (although the occurence of such an arc also depends on the initial condition). If a singular
arc occurs, such an arc is usually called a turnpike (see, e.g., [6] or [3]) meaning that during a certain time
interval, the optimal control must take intermediate values between 0 and 1 (see Proposition 4). According to
turnpike properties (see [39] and references herein), the corresponding portion of trajectory should then remain
close to an optimal steady state point as computed in Section 3.
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(ii) Note also that the strict concavity of vP is fundamental to ensure Legendre-Clebsch’s condition : if
v′′P = 0, then φ̇|u would be zero implying the possible occurence of a singular arc of second order (see [22]),

i.e., the singular control cannot be computed from φ̈ (as in Proposition 4), but from
....
φ .

We now provide the expression of the singular control as a feedback of the state.

Proposition 4. Along a singular arc defined over a time interval [t1, t2], the singular control t 7→ us(t) is
given by us(t) := ψ(c(t), p(t)), t ∈ [t1, t2] where ψ : Ω→ R is defined as

ψ(c, p) := −a(c, p)

b(c, p)
,

with
a(c, p) := −kR

(
cpvP (p)v′′P (p) + v′P (p)[v′P (p)((1 − c)2 − p) + vP (p) − kRc

2]
)
,

b(c, p) := k2Rc
2(1 − c− p)v′′P (p).

(12)

Proof. Since λp = λ̇p = 0 over [t1, t2], we find that

φ̈ = kRc(1 − c− p)λ̈p

= −kRc(1 − c− p)

[
λ̇c[v

′
P (p)(1 − c) + kRc] + λc

d

dt
[v′P (p)(1 − c) + kRc] + v′′P (p)ṗ

]
(13)

Now, puting (11) into the previous expression and collecting the terms with u (coming from ṗ) and the ones
without u allows to write (13) as

φ̈ = − kRc(1− c− p)
kRc+ v′P (p)(1− c)

(a(c, p) + b(c, p)u),

where a, b are given by (12). Using that φ̈ = 0 over [t1, t2], the result follows.

Remark 2. To complete the sign condition (9) coming from the Hamiltonian condition (8), the previous
proposition implies that if φ ≡ 0 over some time interval [t1, t2], then the corresponding singular path necessarily
coincides with a portion of orbit of∣∣∣∣∣ ċ = vP (p)(1− c)− kRc(1− c− p),

ṗ = −a(c,p)b(c,p) kRc(1− c− p)− pvP (p),
(14)

that is, system (2) in which the input u is the feedback control u = ψ(c, p).

We now analyze the asymptotic behavior of the dynamical system (14) near (c∗, p∗).

Proposition 5. The optimal steady-state point (c∗, p∗) is a saddle point of (14).

Proof. First, note that system (14) can be equivalently rewritten∣∣∣∣∣ ċ = vP (p)(1− c)− kRc(1− c− p),

ṗ =
v′P (p)
cv′′P (p) (v

′
P (p)[(1− c)2 − p] + vP (p)− kRc2)

(15)

Recall that the optimal steady-state point satisfies p∗ = (u∗)2 = (1− c∗)2, c∗ = 1− u∗ where u∗ is the unique
solution of the equation vP (u2) = kR(1− u)2 over [0, 1]. Thanks to these relations, we can verify that (c∗, p∗)
is an equilibrium of (15). In addition, the Jacobian matrix of (15) at this point writes

A :=

[
α β
γ δ

]
,

with ∣∣∣∣∣∣∣∣∣∣

α = −vP (p∗)− kR(1− 2c∗ − p∗),
β = v′P (p∗)(1− c∗) + kRc

∗,

γ = − 2v′P (p∗)
c∗v′′P (p∗) (v

′
P (p∗)(1− c∗) + kRc

∗),

δ = − v
′
P (p∗)
c∗ ((1− c∗)2 − p∗).

We see that β > 0 and that γ < 0, and thanks to the definition of (c∗, p∗), we verify that α = δ = 0. It follows
that the matrix A has exactly two non-zero eigenvalues of opposite sign which ends the proof.
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At this step, we have seen that an optimal control satisfies almost everywhere over [0, T ]: either u ∈ {0, 1}
(depending on the sign of φ), or u is singular and its expression us is provided by Proposition 4. Observe that
there is no guarantee that along a singular arc, the singular arc is admissible, i.e.,

|us| ≤ 1. (16)

Indeed, the value of the singular control us = ψ(c, p) provided by the Pontryagin Maximum Principle may
exceed the bounds on the control u. Nevertheless, when the singular arc is close to the optimal steady-state
point, then inequality (16) is fulfilled as we shall next see.

Property 1. There exists a neighborhood V ⊂ Ω of (c∗, p∗) such that one has |ψ(c, p)| ≤ 1 for every (c, p) ∈ V.

Proof. When (c, p)→ (c∗, p∗), one has

ψ(c, p) ∼ − kRc
∗p∗vP (p∗)v′′P (p∗)

k2R(c∗)2(1− c∗ − p∗)v′′P (p∗)
= − p∗kR(c∗)2

kRc∗(1− c∗ − p∗)

using that vP (p∗) = kR(c∗)2 in the above equality. This gives

|ψ(c, p)| ∼ c∗p∗

1− c∗ − p∗
= 1− c∗,

using p∗ = (1− c∗)2 and the result follows since c∗ ∈ (0, 1).

So, we can conclude about the admissibility of a singular arc when the corresponding trajectory is suffi-
ciently close to the saddle point (c∗, p∗).

4.3 Discussion about optimal trajectories

The saddle point property of (c∗, p∗) along the singular arcs crucial in order to understand the behavior of
optimal paths and it is in line with properties of turnpikes as in [39]. The optimal point (c∗, p∗) possesses a
stable and unstable one-dimensional manifold. Hence, an optimal trajectory can take advantage of the stable
manifold to approach (c∗, p∗) which by definition is the point for which production is optimal at steady-state.
Because of the transversality conditions (recall that on optimal path contains a Bang + arc over some time
interval [T −ε, T ]), an optimal trajectory will leave a neighborhood of (c∗, p∗) taking advantage of the unstable
manifold before switching to u = +1 until the terminal time.

Thanks to these qualitative properties, we can expect an optimal path to be of the following type:

γ1 − γs − γ2, (17)

where γs is a singular arc, and γi, i = 1, 2 is the union of (possibly a few) Bang arcs.

• The first part γ1 allows an optimal path to approach V before switching to a singular arc.

• Along the singular arc γs, the trajectory stays close to the optimal steady-state.

• In the third part γ2, the trajectory moves away from the optimal steady-state point. For our biological
problem, this last transient corresponds to an artifact due to a fixed final time (recall (7)), and only the
transition from the initial condition to the optimal steady-state is relevant.

4.4 Numerical optimal solutions

In this section, we solve numerically the optimal control problem (P) by a direct method using the software
bocop [38, 5]. This will corroborate the structure of an optimal control given by (17). A time discretization
allows to transform the optimal control problem into a nonlinear optimization problem, solved here by interior
point techniques. A discretization by a Lobatto IIIC formula (6th order) was used with 400 time steps, and
the relative tolerance for NLP solver was set at 10−10.

The optimal trajectories obtained numerically are composed of two bang arcs followed by a singular arc
(which approaches the optimal steady state), see Fig. 3.

These numerical results tend to confirm our conjecture about the structure of an optimal solution given by
(17) : the optimal strategy corresponds to a turnpike behavior. Additionally, these results show the reliability
of the numerical method. Trajectories are actually computed by the direct method, without any knowledge of
the theoretical solution, and the numerical solutions present several characteristics demonstrated previously,
such as the singular arc approaching to the optimal steady state (see Fig. 4).
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Figure 3: Optimal trajectory (solution of (P)), obtained numerically by the direct method using the bocop

solver [38]. The black dashed lines correspond to the optimal steady-state.

5 Model fitting: a bi-level optimization problem

Several microbial models with dynamic resource allocation have been proposed recently, but comparison with
experimental data is rarely carried out. In this context, we propose a numerical method to estimate model
parameters from experimental data and finally evaluate if our framework allows to represent quantitatively
microalgal photoacclimation dynamics. A light down-shift is used as a case study. After a long acclimation to
a light intensity I−, microalgae are shifted at t = 0 to a different intensity I.

5.1 Problem formulation

The model outputs y is a function g of the states x = (c, p) and also possibly of the parameters θ, i.e.

y(t) = g(x(t), θ),

We consider a set of measurements ȳk ∈ Rm, corresponding to time instants t1, . . . , tnk
, k ≥ 1. Our

objective is to find the set of parameters θ = (kP , kR,K)T ∈ (0,+∞)3 such that the optimal solution x(·) of
(P) fits the experimental data. This leads to a so-called bi-level optimization problem:

minθ∈C
∑
k

(g(x?(tk), θ)− ȳk)
T
Q (g(x?(tk), θ)− ȳk)

s.t.

∣∣∣∣∣∣∣
u? ∈ argmaxu∈U

∫ T
0
vP (p(t)) dt,

ẋ(t) = f(x(t), u(t), θ) a.e. t ∈ [0, T ],
x(0) = x∗(I−, θ),

(18)

where Q ∈ Mnk
(R) is a square weighting matrix, C is a non-empty compact subset of (0,+∞)3, f(·, ·, ·) is

the dynamics given by System (2) (in which we incorporate the dependency w.r.t. the parameters), x? is the
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Figure 4: Plot of an optimal path (blue line) in the plane (c, p) by the direct method : in the first phase, the
trajectory approaches (c∗, p∗) (red dot) ; in the second one, it remains close to it along a singular arc (red
dashed lines) ; to satisfy transversality conditions it finishes with a single Bang+ arc.

solution to this system associated with u? ∈ U . In addition, the initial condition is x∗(I−, θ) which is the
optimal steady-state point as computed in Lemma 2, and which depends on the light intensity and parameters.
Problem (P) plays the role of lower level program whereas the optimization w.r.t. θ in (18) is the upper level
program. Problem (18) is unusual because it couples an optimal control problem to a non-linear program.

Experimental data with the microalga Dunaliella tertiolecta [34] have been considered. After several days
of acclimation at 700 µmol.m−2.s−1, light intensity has been shifted down to 70 µmol.m−2.s−1 at t = 0. The
following measurements have been used for parameter estimation:

• The relative content of LHCII, determined from Western blots. We consider that the photosynthetic
sector p follows the same relative dynamics as this protein, and we fix arbitrarily the initial condition
p(0) = 0.1.

• The photosynthetic rate (vP ), given in mole C.cell−1.s−1 and converted in d−1 assuming a carbon content
of 3.5 pmole C.cell−1 (determined by equilibrium values at low light).

• The cellular specific growth rate, which we assume corresponds to vR/(p + r), i.e., the macromolecule
synthesis rate per unit of macromolecule.

5.2 Numerical method

The solution of the bi-level optimization problem (18) is determined using a classical direct search routine (by
the Levenberg-Marquardt method with the lmfit package in Python [26]). At each iteration, the bocop solver
is called to solve the lower level problem for a given θ, using as initial condition the optimal steady-state (which
depends on θ) for the light intensity of pre-acclimation. We take 100 time steps, with a time horizon large
enough such that the second chattering arc occurs after the last measurement (this final arc is not relevant
in our biological problem). For each variable, the square errors between the measurements and the optimal
trajectory are weighted by the inverse of the square of the measurement mean. The computation time to solve
the bi-level optimization problem on a classical laptop was approximatively one minute.

To better assess parameter uncertainty, pairwise confidence regions have been plotted using the function
conf interval2d from the lmfit package [26]. To do so, the two parameters for which the confidence region
is calculated will be varied, while the remaining parameter is re-optimized. The fitting error is then used to
evaluate the parameter confidence regions.

5.3 Fitting results

The estimated parameters with their confidence interval are given in Table 1. The optimal trajectory is
shown with the experimental data in Fig. 5. The fitted optimal trajectory represents well the dynamics of
photoacclimation. The photosynthetic rate falls sharply at t = 0 with the light down-shift, and then slowly
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Table 1: Parameters (with their confidence intervals) estimated as the solution of the bi-level optimization
problem (18)

Parameter Definition Value Unit
kP Maximum photosynthetic rate 1.56 ± 0.26 d−1

kR Macromolecule synthesis rate constant 2.11 ± 0.15 d−1

K Half saturation constant for photosynthesis 79.6 ± 21.2 µmol.m−2.s−1

increases with the reallocation of resources to the photosynthetic sector. On the other hand, the cellular
growth rate (reflecting macromolecule synthesis) slowly decreases after the light shift, until reaching the new
steady-state. The good model fit is the first hint that our approach is effective, and it should now be validated
with other experiments. In Fig. 6, the parameter confidence regions show that kp and K - the two parameters
defining the photosynthetic rate - are correlated. More experimental data would be necessary to better estimate
these parameters.
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Figure 5: Trajectory corresponding to the solution of the bi-level optimization problem (18). The model (blue
lines) fits the experimental data (red crosses) of the microalga Dunaliella tertiolecta facing a light intensity
down-shift from 700 µmol.m−2.s−1 to 70 µmol.m−2.s−1 at t = 0 [34].

6 Optimal allocation under day/night cycles

Given that microalgae have evolved under day-night cycles, one may assume that they have an optimal
allocation strategy to deal with these conditions. In this context, we wish to determine with our coarse-
grained model the optimal trajectory under such a day/night cycle, by imposing that the initial condition is
equal to the final condition (the cycle can thus be repeated day after day). This gives the following optimal
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The two parameters kp and K (which define the photosynthetic rate) are correlated.

periodic control problem:

max
u(·)∈U

J(u) :=

∫ T

0

vP (p(t), I(t)) dt, s.t. (c(0), p(0)) = (c(T ), p(T )), (19)

where (c(·), p(·)) is the unique solution of (2) for a given control u ∈ U , and T = 1 d. For the light pattern,
we use a night period τ followed by a sinusoidal signal:

I(t) :=

∣∣∣∣∣ 0 for 0 ≤ t ≤ τ,
Imax sin2

(
t−τ
T−τ π

)
for τ < t ≤ T.

Note that in Problem (19), the initial condition is unknown since a periodic constraint on the state has been
added.

Using our fitted model, optimal allocation strategy under day/night cycles is determined numerically using
the direct method with bocop (as done previously in Section 4). In line with [18], we use Imax = 1000
µmol.m−2.s−1 and τ = 0.41 d. Results are presented in Fig. 7. The optimal trajectory consists in three Bang
arcs, with the control u equals to 0-1-0. Note that several simulations with different parameter values and light
signals (changing the maximum light intensity and the day length) have been carried out, and the structure of
the optimal trajectory remains the same. Interestingly, the synthesis of the photosynthetic apparatus always
begins a few hours before dawn in our predictions. This behavior is actually observed in several laboratory
and field studies, see e.g., [44, 20, 18]. Microalgae show thus an anticipation capacity - based a priori on
their circadian clock [24, 36] - which allows them to deal with the day/night cycle optimally according to our
assumptions.

7 Discussion

A coarse-grained model was proposed to predict microalgae growth and photoacclimation dynamics. Based on
evolutionnary principle, growth can be represented by an optimization problem: intracellular resources should
be allocated in order to maximize microalgae growth over a time period. The optimal control problem was
first studied with the Pontryagin Maximum Principle. Facing a light shift, we have shown that the optimal
strategy of photoacclimation is a turnpike: after a transient, the trajectory remains close to the optimal steady
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Figure 7: Optimal trajectory obtained numerically by the direct method using the bocop solver under day-
night cycle. The control u (bottom figure, blue line, left axis), corresponding to the allocation of macromolecule
synthesis to the photosynthetic apparatus, is switched on a few hours before dawn. This anticipatory behavior
is in line with the averaged normalized expression of genes involved in photosynthesis in Emiliania huxleyi in
the North Pacific Subtropical Gyre [18] (bottom figure, red marks, right axis).

state. Numerical results were in line with our analysis, confirming our development and the reliability of the
numerical method. Model parameters were then estimated by solving a bi-level optimization problem. The
model fits well photoacclimation dynamics when microalgae face a light down-shift. More surprising, the
model also represents - at least qualitatively - the anticipation behavior of microalgae under day-night cycle:
the synthesis of the photosynthetic apparatus starts a few hours before dawn, as observed experimentally in
laboratory and field studies [44, 20, 18].

Several photoacclimation models have been proposed, where the allocation to the photosynthetic apparatus
is either empiric (i.e., defined as a function of environemental conditions) [13, 12, 4, 27, 33] or based on
optimization principle [31, 2, 14, 19, 10, 43]. But, to our knowledge, only our approach allows to represent the
anticipatory behavior of algae.

More generally, the anticipation capacity of microorganisms have been observed, e.g. in the bacte-
ria Escherichia coli and the yeast Saccharomyces cerevisiae [23]. To represent anticipatory behavior with
optimization-based models, optimization over a time window is necessary given that the biological response
starts before the environemental signal. A notable example of cellular anticipation was proposed by [41] who
predicted a change of gene expression before the complete depletion of a nutrient. On the other hand, antic-
ipation is possible only in some conditions, e.g., under periodic regime or if a signal announces a change of
environemental conditions, and only if the species have evolved in these conditions. In consequence, optimiza-
tion over a time period could not be used in any cases.

On a methodological aspect, the originality of this work is to propose a fitting procedure for dynamic
resource allocation models, leading to a bi-level optimization problem in which the lower level is an optimal
control problem and the upper one is a standard non-linear program.

A few studies have deal with this kind of problem, in particular to estimate the objective function that
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a biological system optimizes (the so-called inverse optimal control problem). The cost function is generally
written as a weighteid sum of known functions, and the objective is thus to estimate the weights (leading to a
parameter estimation problem). Such a problematic has been encountered in the context of motion planning.
For instance, [25] have identified the underlying optimality criteria of human locomotion. The solution was
obtainned with two optimization algorithms, where the upper level calls at each iteration the lower level. In [1],
a bilevel problem was also formulated to tackle arm mouvement. It was solved numerically by a discretization
method and the use of optimality conditions in non-linear programming.

Closer to our study, [40] have proposed a computational approach to solve inverse optimal control problem
in systems biology. As a first step, the inputs and parameters (corresponding respectively to u(t) and θ with
our notation) are estimated by minimizing the error between measurements and model outputs. The resulting
parameters are then used to compute the Pareto set of optimal control. Finally, the objective function is
estimated such that the optimal trajectory corresponds to the observed dynamics. The major advantage of
this approach is that there is no longer a bi-level optimization problem, but identifiability issues are nevertheless
to be feared when estimating the input.

The numerical methods proposed here and in the aformentionned studies work on relatively small models
(with a limited number of variables), but new developments will be required for bigger models (i.e., for
metabolic models at genome scale). Finding issues in a general setting to this kind of optimization problems
could also be investigated in future works.
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