, ) has a point of transverse intersection with W s (q 2 ) which does not belong to

, (q))) \ O(q) = ? ? (W s (q) ? W u (q)) \ {q} = ?

, If p ? (W s (q) ? W u (q))\{q}, then p / ? O(q) and clearly p ? W s (O(q)) ?

, Since the relation is transitive, we deduce that q ? f kj (q) for any k ? N. Hence, choosing k = N , there exists a point of transverse intersection between W s (q) and W u (q) which does not belong to the orbit of q, Up to consider f ?i (p) instead of p, we assume that p ? W s

M. Arcostanzo, M. Arnaud, P. Bolle, and M. Zavidovique, Tonelli Hamiltonians without conjugate points and C 0 integrability, Mathematische Zeitschrift, vol.280, issue.1-2, pp.165-194, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00865723

A. Abbondandolo and A. Figalli, Invariant measures of Hamiltonian systems with prescribed asymptotic Maslov index, Journal of Fixed Point Theory and Applications, vol.3, issue.1, pp.95-120, 2008.

R. L. Adler, A. G. Konheim, and M. H. Mcandrew, Topological entropy. Transactions of the American Mathematical Society, vol.114, pp.309-319, 1965.

S. B. Angenent, The periodic orbits of an area preserving twist map, Communications in Mathematical Physics, vol.115, issue.3, pp.353-374, 1988.

M. Arcostanzo, The C 0 integrability of symplectic twist maps without conjugate points, 2016.

V. I. Arnold, On a characteristic class entering into conditions of quantization

, Akademija Nauk SSSR. Funkcionalnyi Analiz i ego Prilo?enija, vol.1, pp.1-14, 1967.

M. Arnaud, Green bundles and related topics, Proceedings of the International Congress of Mathematicians, vol.III, pp.1653-1679
URL : https://hal.archives-ouvertes.fr/hal-01327105

H. Book-agency, , 2010.

M. Arnaud, Hyperbolicity for conservative twist maps of the 2-dimensional annulus, Publicaciones Matemáticas del Uruguay, vol.16, pp.1-39, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01174964

M. Arnaud, Denjoy dynamics and horseshoes on surfaces, 2018.

V. Bangert, Mather sets for twist maps and geodesics on tori, Dynamics reported, pp.1-56, 1988.

F. Béguin and Z. Boubaker, Existence of orbits with nonzero torsion for certain types of surface diffeomorphisms, Journal of the Mathematical Society of Japan, vol.65, issue.1, pp.137-168, 2013.

J. Buzzi, S. Crovisier, and O. Sarig, Measures of maximal entropy for surface diffeomorphisms
URL : https://hal.archives-ouvertes.fr/hal-02367519

R. H. Bing, The geometric topology of 3-manifolds, vol.40, 1983.

G. D. Birkhoff, Surface transformations and their dynamical applications, Acta Mathematica, vol.43, issue.1, pp.1-119, 1922.

G. D. Birkhoff, Bulletin de la Société Mathématique de France, vol.60, pp.1-26, 1932.

. Zouhour-rezig and . Boubaker, Torsion of orbits and invariant measures for surface diffeomorphisms, 2012.

M. I. Brin and J. B. Pesin, Partially hyperbolic dynamical systems, Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, vol.38, pp.170-212, 1974.

M. Bialy and L. Polterovich, Lagrangian singularities of invariant tori of Hamiltonian systems with two degrees of freedom, Inventiones Mathematicae, vol.97, issue.2, pp.291-303, 1989.

M. Bialy and L. Polterovich, Hamiltonian systems, Lagrangian tori and Birkhoff's theorem, Mathematische Annalen, vol.292, issue.4, pp.619-627, 1992.

L. Barreira and J. Schmeling, Sets of "non-typical" points have full topological entropy and full Hausdorff dimension, Israel Journal of Mathematics, vol.116, pp.29-70, 2000.

G. Contreras, J. Gambaudo, R. Iturriaga, and G. P. Paternain, The asymptotic Maslov index and its applications. Ergodic Theory and Dynamical Systems, vol.23, pp.1415-1443, 2003.

A. Chenciner, La dynamique au voisinage d'un point fixe elliptique conservatif, Seminar Bourbaki, pp.147-170, 1983.

C. C. Conley, Hyperbolic sets and shift automorphisms, Lecture Notes in Phys, vol.38, pp.539-549, 1975.

J. Conejeros, Study of the Local Rotation Set, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01233134

S. Crovisier and R. Potrie, Introduction to partially hyperbolic dynamics, 2015.

Z. Coelho, W. Parry, and R. Williams, A note on Liv?ic's periodic point theorem, Topological dynamics and applications, vol.215, pp.223-230, 1995.

S. Crovisier, Ensembles de torsion nulle des applications déviant la verticale, vol.131, pp.23-39, 2003.

J. Cheng and Y. Sun, A necessary and sufficient condition for a twist map being integrable, Science in China. Series A. Mathematics, vol.39, issue.7, pp.709-717, 1996.

P. D. Manfredo and . Carmo, Differential geometry of curves and surfaces, 1976.

R. L. Devaney, An introduction to chaotic dynamical systems, Studies in Nonlinearity, 2003.

J. Dieudonné, ;. , and X. Gauthier-villars, Éléments d'analyse. Tome I. Cahiers Scientifiques, 1981.

K. J. Falconer, The geometry of fractal sets, Cambridge Tracts in Mathematics, vol.85, 1986.

R. Fiorenza, Hölder and locally Hölder continuous functions, and open sets of class C k , C k,? . Frontiers in Mathematics, 2016.

J. Gambaudo and É. Ghys, Enlacements asymptotiques. Topology, An International Journal of Mathematics, vol.36, issue.6, pp.1355-1379, 1997.

C. Godbillon, Éléments de topologie algébrique, 1971.

C. Golé, Symplectic twist maps, Advanced Series in Nonlinear Dynamics, vol.18, 2001.

M. Gidea and C. Robinson, Diffusion along transition chains of invariant tori and Aubry-Mather sets. Ergodic Theory and Dynamical Systems, vol.33, pp.1401-1449, 2013.

A. Gramain, Le type d'homotopie du groupe des difféomorphismes d'une surface compacte, Annales Scientifiques de l'École Normale Supérieure. Quatrième Série, vol.6, pp.53-66, 1973.

L. W. Green, A theorem of E. Hopf, The Michingan Mathematical Journal, vol.5, pp.31-34, 1958.

M. Gidea and P. Zgliczy?ski, Covering relations for multidimensional dynamical systems, Journal of Differential Equations, vol.202, issue.1, pp.32-58, 2004.

A. Hatcher, Algebraic topology, 2002.

M. R. Herman, Sur la conjugasion différentiable des difféomorphismes du cercle à des rotations, vol.49, pp.5-233, 1979.

M. R. Herman, Sur les courbes invariantes par les difféomorphismes de l'anneau, vol.1, 1983.

K. Hockett and P. Holmes, Josephson's junction, annulus maps, Birkhoff attractors, horseshoes and rotation sets, vol.6, pp.205-239, 1986.

M. W. Hirsch, Differential topology, 1976.

W. Morris, C. C. Hirsch, ;. Pugh, . Xiv, and C. Berkely, Stable manifolds and hyperbolic sets, Global Analysis (Proc. Sympos, pp.133-163, 1968.

S. Hu, A variational principle associated to positive tilt maps, Communications in Mathematical Physics, vol.191, issue.3, pp.627-639, 1998.

A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Institut des Hautes Études Scientifiques. Publications Mathématiques, pp.137-173, 1980.

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, 1995.

A. Kupers, Lectures on diffeomorphism groups of manifolds, pp.12-2019, 2019.

P. L. Calvez, Propriétés des attracteurs de Birkhoff. Ergodic Theory and Dynamical Systems, vol.8, pp.241-310, 1988.

P. L. Calvez, Propriétés dynamiques des difféomorphismes de l'anneau et du tore, p.131, 1991.

J. N. Mather, Characterization of Anosov diffeomorphisms, Nederl. Akad. Wetensch. Proc. Ser. A 71 = Indag. Math, vol.30, pp.479-483, 1968.

J. N. Mather, Existence of quasiperiodic orbits for twist homeomorphisms of the annulus, Topology. An International Journal of Mathematics, vol.21, issue.4, pp.457-467, 1982.

J. N. Mather, Glancing billiards. Ergodic theory and dynamical systems, vol.2, pp.397-403, 1982.

J. N. Mather, Variational construction of orbits of twist diffeomorphisms, Journal of the American Mathematical Society, vol.4, issue.2, pp.207-263, 1991.

G. Meurant, A review on the inverse of symmetric tridiagonal and block tridiagonal matrices, SIAM Journal on Matrix Analysis and Applications, vol.13, issue.3, pp.707-728, 1992.

N. John, G. Mather, and . Forni, Action minimizing orbits in Hamiltonian systems, Transition to chaos in classical and quantum mechanics, vol.1589, 1991.

S. Matsumoto and H. Nakayama, On the Ruelle invariants for diffeomorphisms of the two torus, Ergodic Theory and Dynamical Systems, vol.22, pp.1263-1267, 2002.

J. Moser-;-princeton and N. J. , With special emphasis on celestial mechanics, Hermann Weyl Lectures, the Institute for Advances Study, Annals of Mathematics Studies, issue.77, 1973.

J. Moser, Monotone twist mappings and the calculus of variation, Ergodic Theory and Dynamical Systems, vol.6, issue.3, pp.401-413, 1986.

S. Marò and A. Sorrentino, Aubry-Mather theory for conformally symplectic systems, Communications in Mathematical Physics, vol.354, issue.2, pp.775-808, 2017.

M. H. Newman, Elements of the topology of plane sets of points, 1961.

S. E. Newhouse, Hyperbolic limit sets, Trans. Amer. Math. Soc, vol.167, pp.125-150, 1972.

J. Palis, On Morse-Smale diffeomorphisms, Bulletin of the American Mathematical Society, vol.74, pp.985-987, 1968.

J. Palis and J. Welington-de-melo, Geometric theory of dynamical systems, 1982.

B. Yakov and . Pesin, Dimension theory in dynamical systems, Contemporary views and applications, 1997.

L. Polterovich, The second Birkhoff theorem for optical Hamiltonian systems, Proceedings of the American Mathematical Society, vol.113, issue.2, pp.513-516, 1991.

J. Palis and F. Takens, Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations, Cambridge Studies in Advanced Mathematics, vol.35, 1993.

C. Robinson, Dynamical systems, Stability, symbolic dynamics, and chaos, 1999.

. Walter-rudin, Principles of mathematical analysis, International Series in Pure and Applied Mathematics, 1976.

D. Ruelle, Rotation numbers for diffeomorphisms and flows. Annales de l'Institute Henri Poincaré, Physique théorique, vol.42, issue.1, pp.109-115, 1985.

, Sol Schwartzman. Asymptotic cycles. Annals of Mathematics. Second Series, vol.66, pp.270-284, 1957.

M. Shub, With the collaboration of Albert Fathi and Rémi Langevin, 1987.

S. Smale, Diffeomorphisms of the 2-sphere, Proceedings of the American Mathematical Society, vol.10, pp.621-626, 1959.

S. Smale, Diffeomorphisms with many periodic points, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), pp.63-80, 1965.

S. Smale, Differentiable dynamical systems, Bulletin of the American Mathematical Society, vol.73, pp.747-817, 1967.

H. Houshang and . Sohrab, Basic real analysis, 2003.

P. Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol.79, 1982.

J. Yoccoz, Introduction to hyperbolic dynamics, Real and complex dynamical systems, vol.464, pp.265-291, 1993.